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ABSTRACT

A method is presented for analyzing Pilot-induced oscillations

(PIO) for the NT-33 closed-loop pilot model when retardations and

coefficients are not constant. The variation of retardations and

coefficients results from the effect of wind shear and the neuro-

muscular dynamics of the pilot reported in available data. Non-

linearities in the model are also considered. The method is based

on the use of a new description of such systems in terms of convolution

equations. Spectral factorization is applied to the entire functions

of exponential order. The result is a criterion for the PIO-system

with variable coefficients and variable delays. The criterion assumes

continuity and boundedness of the coefficients and delays. A Lyapunov

functional is-constructed which gives a criterion on the roots of a

certain quasi-polynomial, i.e., a polynomial in a variable and the

exponential of that variable. The largest domain of attraction is

obtained from the Invariance Principle ,
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1. INTRODUCTION

* The Air Force Flight Dynamics Laboratory (AFWAL/FI) has been con-

* ducting research on the effects of control system dynamics on longitudinal

flying qualities during fighter approach and landing. A sharp degradation

in flying qualities takes place during this critical phase Lof the landing

task. Severe pilot-induced oscillations during the flare have been

reported. The objective in the program has been to investigate pilot-

induced oscillations (PIO) of the NT-33 aircraft due to significant

control system lags, to effects of wind shear and to pilot delays.

Advance digital control schemes add much greater flexibility and logic

capabilities when compared to analog systems. However, this increase in

complexity of future aircraft flight control systems may also add larger

control system lags. It has been observed that large control system

lags, high pilot gains, pilot-lag due to neuromuscular dynamics and

aerodynamic transport lag are all possible causes of pilot-induced

oscillation problems. These phenomena all require careful theoretical

* analysis.

It should be stressed that the use of digital control system Is

now a reality and its effects on flying qualities of these fighter

' aircrafts need careful analysis. The variable stability NT-33 is

capable of producing a wide range of aircraft and control system

characteristics. The main reason for selecting the NT-33 aircraft was

to test the flying qualities of simulated YF-12 and YF-17 aircraft. The

simulation of the YF-17 with the NT-33 aircraft has encountered serious

PIO difficulties in flare whereas no such problems have been reported for

YF-17 11]. Some detailed studies of PIO during the NT-33 aircraft

simulation can be found in earlier works of USAF/Calspan f2]. Calspan

diagnosed the PIO-problem as excessive control lags. They modified the

Wr
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simulated control system dynamics to reduce the lag contribution to

longitudinal dynamics and found that it reduced the problem. The effects

of significant control dynamics on fighter approach and landing longitudinal

flying qualities were also investigated in flight using the USAF/Calspan

NT-33 aircraft [3]. Pilot-induced oscillations occurred during the

landing task. The flight tests reported in [3] provide a data base for

the development of suitable flying qualities requirements which are

applicable to aircraft with significant control system dynamics.

The properties of solutions of linear differential equations of

the retarded type with constant coefficients and constant time-delays

for the pilot model has been considered by several authors. However, the

formulation has not been considered when the coefficients and retardations

in the closed-loop pilot model are variable. Such formulation may now

be Justified when the effect of wind shear and the neuromuscular system

dynamics are included. This extension of the analysis is suggested by

the -aent measurements that have been cited. A generalized closed-

loop nonlinear pilot model for NT-33 aircraft, with variable retardations

and coefficients is considered herein. The theoretical analysis is

developed in the time domain to analyze the pilot-Induced oscillations

problem in the most general format.

II. OBJECTIVES

The structure of the research is as follows. First, a formulation

of the closed-loop NT-33 pilot model is introduced. The NT-33 air-frame

dynamic equations, linearized about the trim conditions and representing

the manual flare and landing of the aircraft, have been used. The pilot

dynamics are assumed to have variable gain and variable retardation,

possibly due to wind shear and the neuromuscular effects. It is

assumed that the pilot forms the closed-loop, thus changing the overall

characteristics of the system.

~ . . . . m
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-After having introduced the required formulation of the closed-

loop NT-33A pilot model, certain theorems dealing with the spectral

factorization of entire functions of the exponential order were

used to generate Lyapunov functionals. The reference source for this

material is the English translation of the book by Levine [4], which

gives a comprehensive treatment of the properties of the zeros of the

entire functions and related topics. The spectral factorization

theorems play a central role in constructing the Lyapunov functionals.

Spectral factorization is emphasized for the role that these equations

play in generating Lyapunov functionals for a class of system that

represents PIO-systems, rather than on the mathematical proofs.

Convolution equations involving distributions which satisfy assumptions

made by Hale and Meyer 15] for the functional equations of the delay

type are used to describe the dynamical systems in analyzing the PIO

system.

III. THE PILOT M4ODEL

Figure 1 represents a nonlinear pilot model. The NT-33 airframe

dynamic equations linearized about the trim condition representing the

manual flare and landing of the aircraft have been used. These equations

are the same as those given in USAF/CALSPAN 12] and Smith [3], except

that only the longitudinal transfer functions have been derived. The

longitudinal equations representing the open-loop aircraft dynamics about

the trim conditions during the flare and landing maneuvers are represented as

i!I'
' *i* .
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where symbols represept as follows: u, w, q, B are perturbation velocity from

trim along x-body axis, perturbation velocity from trim along z-body axis, body

axis pitch rate and pitch attitude respectively. 6ES is pitch stick deflection

at grip. Also, notationally,

Xu --1 • x .% -a , X6E s  - 1x
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Xu, XI Zu, Zw are body axis dimensional x-force derivative and z-force deriva-

tires respectively, Mul 1x' ,y are aircraft mass, moment of inertia about body

x-axis and body y-axis respectively, uo, w q, %, and 00 are trim values.

These equations imply that the reference axis are body axis and the wings

are always level. For small angles, uo = VT , the trim true airspeed, and

% a WOVT. The variables u, w (a), B and 6ES are all incremental values from

the reference trim conditions.

PILOT 8ES , T-33 0
f " AIR FRAiEW

Fig. I
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The transfer function for longitudinal stick input (6ES) and pitch attitude

control output (e) can be derived from the equations of motion (1) as

'e ~ ES 8 2 (2{) iM%(s + )(s +
Le

6ES _ s 2 + pw s + w 2 2
(s + 2C SO (s 2C W

SP sp) (s + 2 ph ph Wph)

where Tel,2 represents airframe lead time constants Csp w , and Cph' wph are
01.2 sp sp pOp

short period damping ratio, short period undamped natural frequency and phugoid

damping ratio, phugoid undamped natural frequency respectively. p(s) andca(s)

are polynomials in s. The polynomials p(s) and a(s) are such that the degree of

a(s) is assumed to exceed to that of p(s). An inspection of the data base of

ref. [3, 10-12] suggests that a reasonable model for pilot dynamics in pitch

tracking would be of the form

m s a t)ste i oL(s) = Z a, M(S) + Z bt (t) s
i  n > m (3)

iMO o

where a1 (t), and b1 (t) are bounded coefficients and T(t) is a bounded time-

delay, the time-delay T(t) is unknown and can be assumed due to neuromuscular

effect of the pilot. A small transmission lag may also be present. The pilot

dynamics is assumed to have variable gains a1 (t), bt (t) possibly due to wind

shear and the neuromuscular effects. It is assumed that the pilot forms the

closed-loop, thus changing the overall characteristics of the system.

A closed-loop analysis can be performed by considering the pilot to be

controlling to some desired attitude which minimizes the pitch attitude error e.

The non-linearities of the artificial feel system are included in the model, as

well as the nonlinearities in the stability augmentation systems.

This completes our formulation of the closed-loop nonlinear model with

the pilot in the loop. The dynamics of the NT-33 airframe, the pilot and the

nonlinearities of the artificial feel system as well as the nonlinearities of

the stability auguentation system have all been defined. In the next section,

we give some notations, theoretical backgrounds and our method of analysis.

] T- ....
I '* - 11III.. . . . . . " L' . " . . . ' . .. . . . ~. . . . . . . . .
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IV APPLICATION OF INVARIANCE PRINCIPLE

The 'invariance principle' of J. P. LaSalle played an important role in

the theory of abstract dynamical systems. Very few practical applications

(7.13] of 'invariance principle' have been attempted because of its complexity.

Nevertheless, it is also particularly useful in solving practical problems.

By applying the invariance principle, we are able to derive stability criteria

for the dynamical systems which are optimal in a certain sense. Thus, the

stability results can be improved considerable when the study of t0e system is

based on LaSalle's invariance principle [6].

In this section, we first introduce our notations. This is followed by

some lemmas on spectral factorization and its application to the invariance

principle. Levin 14) has already given comprehensive treatment of the proper-

ties of zeros of the entire functions. The spectral factorization of the entire

function plays an important role in studying the properties of solutions as we

shall see in our analysis of the pilot-induced oscillation problem.

The following notation from Hale (8] will be used in this paper: En is

complex Euclidean n-space, and for x c En, jxi denotes any vector norm. For

a given T(t) > T > 0, C denotes the linear space of continuous functions mapping

the internal [ - i, ] Into En and for # c C, I 1 = sup 1 () - e <O.

Of course C with this norm is a Banach space. For H > 0, CH denotes the set of

* in C for which II * II H, for any continuous function x(s) whose domain is

- C i s , at > 0, and whose range is in En, and for any t, 0. <t <a the

symbol xt will denote xt (9) - x (t + e), - <__'0; that is xt is in CH,

and is that segment of the function x(s) defined by letting s range in the

interval t - <s < t.

Let G(t,o) be a function defined on (0,-) x CH into En and let x it)

denote the right hand derivative of x(s) ats - t. The system

;it) G(t, xt). t o
is cilled a functional - differential equation (FDE).

d M i i - - -



8

Definition -Let to > 0, and let *be any given function in C.A function

X(to, #) (t) is said to be solution of FDE with initial function # at t =to

if there exists a numb~er A > 0 such that

(a) for each t, t0.ct <to + A, xt (to, 0) is defined in C.

0

(c) X(t0,* (t) satisfied the functional differential equation

(FDE) for to. -. t < to + A.

To analyze the P10-problem the original model in fig. 1 is redrawn as

e I*e1(t) p*e~t M e

Fi g. 2

Note that in the block diagram

*e, (t)

(E a1 t 6 ~) bi(t) 6 i 1 e1(t) (4)

Notationally, we have

d" *e(t) a em(t)
and

S~) e~t) - e"(t-T(t))

*where * denotes the convolution operator and ?denotes the in-th derivative

of Dirac delta function. Throughout we are assuming that the distribution

functions are measureable and have comp~act support on [0,T).
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Next, we define the convolution equations.

el(t) - a * e2(t)

e (t) = I * el(t) = X * a * e2(t) (5)

The Laplace transform of the distribution el(t) can be represented by a

function

-st 0 -st
<el .e > = $ •l(t) e dt

_CD

It is assumed, however, that the distributions are of the finite order. In

other words the distributions throughout have compact support. For details of

such distribution functions, we refer to Schwartz [9]. Our objective here is

to provide some background material rather than vigorous derivations. Next,

we state a Theorem which establishes the properties of solutions e(t). This

result will be used later in analysis of the closed-loop pilot model.

Theorem 1. The solutions of the equation

e(t) = a * * e2 (t) = 0

are exponentially stable provided the transcendental polynomial 1(s)o(s)

satisfy the following conditions:

(i) Re [. (s) o (s) 0t(t) -- o] 0

(ii) I (w)o (w) N 0

Proof of Theorem 1. It is sufficient to show that the real parts of the

roots of the transcendental polynomial

P(s;T(t)) = I(S) - a(s)

m I n(t)s n IE; a, Mt SI •e- t  + r bi Mts ) "

I=o i=o

22 -2 2!
(s +2 wsp s + wsp) (s + 2 cphwPh s + wph) =O (6)

are all negative for r (t) >.O. It is obvious that Re o(s) <0 provided

* I *1

.. ..AJ -
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0 ._ .2 and 0 < ;ph wph* To show that the real part of the

transcendental polynomial I(s;T(t)) to be negative, we expand in the form

* L (s;t(t)) * sn + [an- 1 (t) e
-T(t)s + bn~l(t) ] s n-i

+ [an_2 (t) e-T(t)s + bn-2 (t) I s n-2 +

+ [a t) -T(t)s + bo (t) 1 (7)

we have assumed that m - n-i. If m is order less than n-i, we can set the

coefficients an_1 etc. zero.

I(s;T(t)) sn + pn-l(t) sn-l + pn-2 (t) sn-2 + + Po(t) (8)

where

Pn-l (t)= an-l (t) eT(t)s + bnl (t)

Pn-2 (t) = an_2 (t) e
-T(t)s + bn2 t)

Pe (t) a' (t) eT(t)s + b0  (t)!0

Since, Iexp [-T (t)s I _< I for all T(t) > 0, hence, when T(t) 0 and s >_ 0,

the coefficients pi(t), i=l,..., .n are bounded. Let p denote a constant such

that p= max I pi(t) I and let D = max P1, (n+I)p] > 0. We will now show that

1._<i _< n under the assumptions of Theorem 1, all roots of t(s;T(t)) lie in the

left half plane. To prove this, we consider two cases: (i) when Is I 2.D and

(ii) when jsl < D. Now suppose Isl I D, then

I (S;T(t)) I I sn + P (t) sn-l + . +P (t) I

is In [I-P1sJ(t).I - - Ip° (t) 1

Is~ nIsIP1_Il 1 - (n + 1) p I > 0 (9)

The last inequality follows from the fact that Isl > - (n + 1) p> 1. Thus,

in the domain Isl !_ D and Re (s) > 0 the p6lynoial L(s;r(t)) possesses no

(V



root for any bounded T(t) > 0. Now suppose that Isl < D. From condition

M(1) f Theorem 1 roots of 1(s) u(s) are all in the semi-plane Re (s) < 0 for

T (t) - 0. Now when r(t) 40, the only possibility for the characteristic roots

& to fall within Re (s) > 0 is that for T(t)4 0 the variable s runs along the

imaginary axis on the s-plane from -D to D. But the condition (ii) does not

allow the roots to run along the imaginary axis of s-plane and therefore under

, our assumptions the characteristic roots must remain within the semi-plane

Re (s) < 0. This completes the proof.

For the nonlinear modEl in fig. 2, the description of the system is

obtained as

a *a * e2 (t) + f (t. p*e2 (t)) = u(t); t > 0 (10)

To analyze stability of the functional equation (10), we shall construct

a Lyapunov functional. The spectral factorization of the entire function plays

an important role in the construction of this Lyapunov functional as will be

seen later. We depend heavily upon the works of Levin [4] who has shown that

spectral factorization may be applied to entire functions of exponential type.

We state these results for our convenience.

Lemma 1. In order that an entire function F(s) of exponential type may be of

class A it is necessary and sufficient that for some fixed A > 0 and for every

R > A the following inequality be valid:

R in F (w) F (-w)l
2 dw < MfA

w
2

where MfA is a constant.

Lemna 2. For an entire function F(s) of exponential type to have the

representati on

F(w) - (w) (-w)iT
where 0 (w) is an entire functiton of type + ( I Tit) l.<. T) with zeros in

the half-plane Re(s) 1 0, if, and only if F(s) belongs to class A and F(w) > 0.

Iif7

( t
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We will now introduce our main results to establish asymptotic stability

of the nonlinear system (10). Stability of the largest invariant set is then

derived from the application of the 'invariance principle'.

5. MAIN RESULT

Consider a Lyapunov functional

V~ (.) =e/2 qe

t(e2 )
=Z [2 (*o *e, (t)) (p*e (t))
t(o)

- 1€*e 2 (t))
2  ] dt (11)

where we have assumed that i(s) a(s) and p(s) have no common zero. Let

the assumptions of lemmas 1 and 2 hold, then

def.
F(s) = 1(s) a(s) p(-s) + t(-s) o(-s) p(s) (12)

has spectral factorization such that

F(s) = *(s) *(-s). (13)

Let #(s) be the transform of a distribution of order c n and support in

[O,T]. If the assumption of Theorem 1 holds, then F(s)Iswjw> 0. We now

show that V(-) is positive. The state e2 (t) - e2 (to, o)(t) is such that

at time tI - t(O), (e2(t))t - 0. And similarly at t2 - t(e2), (e2)t e2.

Therefore t(O) - -, and t(e2) - 0. Hence the functional (11) can be

' written as

LV(.) ( e t) q e2 (t)

2 - (2( a*o*e2 (t)) (p*e 2 (t))
0

(1* 2 (t))' )dt (14)

--:.J:;po :r...' '' •Y.... .? -' -.*.*.-
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For examining the invariance properties of the nonlinear system (15)

with u(t) 0 0,

L* *e 2 (t) + f (t, p *e 2t)) = 0 (15)

we compare its solution with the linear system

S*o *0 2 t) - 0. (16)

Next, we show that V(-) > 0 along the solution of eqn. (16).

Obviously

V(.) (* e2 (t)) 2 dt > 0 (17)
0

provided * * e2 (t) At 0. We of course'assume that$ * e2 (t) is

* defined. Now, computing D Vt (2) along the trajectories of eqn. (16)

yields:
D+ Vt (e2) limsup [Vt+h - -t (2'

h -*0 +

12limsu [ (4 *F2 (t)) 2 dth 0 t+h

- $ (,*j2 (t))
2 dt ]

t

= -[ *e2 (t)] . (18)

Thus the solution of eqn. (16) Is decaying and any two solutions

e"21 (t o - -0) (t), i2t (to, no) of (16) satisfy the estimate,

I e2t (to' o)  - 2t (too io) io.5 A(t,'1')lIY0  "no oe '(t to) (19)

where notationally I1110 " max._. -_ II0(s)Il. Now consider

functional (17) and compute along the trajectories of (15)

" A
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" DV(e) - sup I [Vt+,(e2) - Vt(e2)]

limoup {[Vt+h(e 2 (t)) - Vt+h(2(t))]

+ [Vt+h(2(t)) - Vt (e2(t))] I

iim. sup [ IIIVt+h(e2(t)) - Vth(e2(t)) + D*Vt(2)(15) T2
- * e2(t)]2  +  C Ilf(t,0 * e2(t)ll

- [ * e2(t)]2  +  Cgltlie (tllo)

- (t,e2(to,*o)(t)) (20)

We have assumed that the nonlinear system admits unique solution and the

nonlinearity is such the Ilf(t.o * e2(t))l I._(t.jle 2 t(t)ll o) where

g(t,u) is nondecreasing in u for t6R+ and W is some non negative function.

It is of course, possible to obtain the function h (-) if the distributions

involved are restricted further. However, a few examples will be presented

to illustrate the application of the method and indicate the type of functionals

that are obtained. To examine the invariance properties of the nonlinear

system, we first note that the solution e2 (to, *o)(t) is bounded for all

t > to because of the existence of a Lypunov functional. If the limit point

Q of e2 (to, *0 ) (t) does not exist on the boundary 6, G is an open set in C,

then by lemma 4.8 in (6], e2 (t o , * 0 )(t) is pre-compact. Now define the

largest invariant set 12 C E a (e2(to,.o)(t) (t'e2(too)(t) - 0 )

then

21to'*o)lt) -, E A Vl(C)

for some C and all t > o.

Ip

litC 4

in •-
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For our assertion, we are making use of the Theorem 4.7, P.78 in

4 [6]. Thus, these results are comb~ined into the following theorem.

Theorem 2. If there exists *(s) whose distribution is of order r and

compact support in [0,T] such that F(s) defined in eqn. 12 has the

spectral factorization such that

i) F(s) - *(s) #(-s);

ii) Conditions of Theorem 1, and lemmas 1 and 2 hold;

where g(t,u) is non decreasing in u for tk

Then there exists a Lyapunov functional V()on G. for system (10) with

* u(t) -0. Furthermore if

deg.

* ~iv) A~ C E - {e2,(t 0, *o)(t) :W(t~e(t,*)t 0

where Wd is some non-negative function then

e2(to, *o)(t) - E rs V_- (c)

for some c and t > o.
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